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PHENOMENOLOGICAL DESCRIPTION OF TWO-VELOCITY 

MEDIA WITH RELAXING TANGENTIAL STRESSES 

V. N. Dorovskii and Yu. V. Perepechko UDC 530.1 

Tangential stresses are generated and subsequently relax during the filtration process 
of high-temperature solutions (or melts) through an enclosing island. The stresses generated 
as well as their relaxation dynamics start determining, in turn, the filtration mechanics of 
the fluid phase leading to a self-contained interaction process of the continua under consi- 
deration. 

The concept of effective elastic deformation was suggested in [i] to describe the relaxa- 
tion of tangential stresses is a viscoelastic medium. By introducing it the authors succeeded 
in generalizing the Maxwell relaxation model to the case of substantial medium deformation. 
This is one of the principal approaches in nonlinear filtration theory. The generalization 
of the Maxwell model to filtration media within the approximations of small deformations and 
low velocities of the filtering fluid was investigated numerous times in the literature (see, 
fo~ example, [2]). To the best of the authors' knowledge, the extension of the Maxwell model 
to the case of nonlinear island deformation and high fluid filtration rates is not available 
in the literature. 

Under conditions of filtration of a viscous fluid through viscoelastic medium the 
effective elastic deformation must be introduced somewhat differently than was done in [i]. 
A theory using the concept of effective el~stic deformation must be compatible with general 
physical requirements: conservation laws and the Galileo relativity principle. 

Below we obtain a system of differential equations, describing the relaxation of tangen- 
tial stresses of a viscoelastic island during its self-consistent interaction with a filter- 
ing viscous fluid. The necessary requirement on the initial deformation of the state of the 
medium is established. The system of equations describes both compact and noncompact two- 
velocity continua. 

For a basis of the general theory one must construct a formalism of elastic interaction 
of the island with the filtering fluid in the reversible hydrodynamic approximation. To 
describe the filtration process within the continuum approach we introduce two velocity 
fields: u - the velocity of motion of an elastic continuum with particle density Pl, and 
v - the velocity of motion of a fluid with partial density P2, filtering through the elastic 
continuum. Two such mutually penetrable continua can interact through a friction force f, 
which is not present in the reversible approximation, and a reaction force being in hydro- 
dynamics proportional to gradients of thermodynamic quantities. Besides, the set of two 
continua is a hydrodynamic system for which conservation laws are valid, being in the case 
of reversible motion 
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Op/Ot + d i v j  = 0 ,  Oh/Ot + v f i Iu = 0 ,  

OS/Ot + div F = O, OE/Ot + div Q = O. 

(1) 

Here the extensive quantities refer to a unit volume: p is the density of the continuum 
aggregate, | is the momentum, ~ij is the tensor of momentum flux, F is the generating en- 
tropy flux, Q is the reversible energy flux, E is the energy, S is the entropy, and T is 
the temperature. 

The equations of motion of a filtering fluid are taken in a form generalizing the Euler 
equations and compatible with the conditions of thermodynamic equilibrium D = const, T = 
const, u = v = 0 for the composite hydrodynamic system 

Ov/Ot + (v, V)V = --V~ -- aVQ, (2 )  

where aV~ is the density of bulk forces, and ~ is the chemical potential. In the following 
Eqs. (i), (2) are supplemented to form a complete system of equations. 

The system (i), (2) is redetermined since the energy conservation law is not independent 
in hydrodynamics. The result of compatibility of the system of equations is to obtain J, 
nij, F, Q, ~, as well as the relations between them. A constructive mechanism of this 
approach is the Galileo relativity principle [3]. Indeed, we transform to a coordinate 
system in which the fluid phase is at rest. The physical quantities referring to this 
system are denoted by the subscript zero. In this case we have [3] 

E = pv~/2 + (v, Jo) @ Eo, J = pv ~ Jo. (3 )  

In  t h e  s e l e c t e d  r e f e r e n c e  s y s t e m  |0 = P l (  u - v ) ,  w h i l e  t h e  f i r s t  law of  t he rmodynamics  i s  

dE o = TdS -~- ~dp + (u -- v, dj0 ) ~- (t/2)ha~dg~g (4)  

(gas  i s  t h e  m e t r i c  d e f o r m a t i o n  t e n s o r ,  and h~$ i s  t h e  " s t r e s s "  t e n s o r ) .  The t h i r d  t e rm in 

(4) reflects the presence of motion in the continuum element and is impossible to remove by 
the selected system of reference. The last term takes into account the energy of elastic 
deformation. We note that the true stress tensor is found from the expression 

a~ 
--oih = P~ih + hage~e~. 

Describing the thermodynamic state of the continuum element by the variables S, p, ga~ 
in a reference system attached to the resting fluid particles, we allow the presence of 
relative motion in the selected continuum element, which at the same time is described by an 
additional thermodynamic variable - the relative momentum |0. Thus, we have a locally non- 
equilibrium thermodynamic system with relaxing degrees of freedom, for which one can select 
the components of |0. According to Leontovich Eq. (4) determines the locally nonequilibrium 
entropy as a function of system energy, external parameters, and relaxing degrees of free- 

dom (~ i  + J o , i )  [41: 

dE o 9 (u -- v, djo) t hag 
dS dp dgag. T T T 2 

It is precisely in this sense that (4) must be understood. 

~ifferentiating the first of relations (3) with respect to time, with account of (4) 
we obtain the rate of energy change as a function of spatial derivatives of thermodynamic 
quantities: 

ot = ~+=2-z -(u 'v) +T-vF+ j--PU,-gF + u,-~r + (5) 
t Og ~ 

+ -5- hag--g-f" 

The l a s t  d e r i v a t i v e  can be e x p r e s s e d  in  t e rm s  o f  t h e  l o c a l  n - h e d r a l  {ea} ,  c h a r a c t e r i z i n g  t h e  
d e f o r m a t i o n  s t a t e :  gas  = ( ~ ,  e $ ) ,  whose v e c t o r s  s a t i s f y  t h e  s y s t e m  o f  dynamic e q u a t i o n s  
[ 5 1  

Oea/Ot + V(u,e  ~) = O. (6 )  
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Replacing in (5) the time derivatives, and collecting then the spatial derivatives under 
the divergence sign�9 we reach the energy conservation law 

OE/Ot + div ([~ + v2/2 + ST~p] j + u(u, Jo) -/h~ecz( e~, u)) = O, 

thus determining ~. At the same time we find F = (S/p)j, p = Pl ~- P2, O& ~- --S/p, Q -~ T, IIik- pvivkq- 

a8 ]o.kv~ + uA]o.~ + p6~h + h=~e~ek as conditions of representing the energy conservation law in 

divergence form. The procedure of transforming the spatial derivatives under the divergence 
sign is discussed in [5] quite in detail. 

The pressure is given in the standard way: p = -E 0 + TS + DO + (u - v, j0), which 
together with (4) makes it possible to write down the Gibbs-Duhem identity 

dp = 9d~ + SdT + ]od(u -- v)-- (t/2)het~dgaf ~. (7 )  

To sum up, with account of (6) the equation of motion (2) acquires the form [6] 

0v t p~ 1 ( 8 )  
o-7 + ( v ' v ) v  P VP + - ~ V ( U - - V ) 2 - - - ~  h~Vg~" 

Equat ions  (1 ) ,  (6 ) ,  (8) wi th  the  i n v e r s e  f l u x e s  found ] ,  ~ i j ,  F and the  given equa t ion  of  

s t a t e  E0 = E0(P, S, J0,  g ~ )  d e s c r i b e  c om pl e t e l y  r e v e r s i b l e  f i l t r a t i o n  in t he  i s o t r o p i c  sys -  

tem under consideration. We note that it is not necessary to supplement the system of equa- 

tions by the conservation law 8pi/St + div(pl u) = 0, since�9 if Pl ~ i/~g (g = det(g~$) 

according to nonlinear elasticity theory [i] the "conservation" of the solid component is 
a consequence of system (6). For |0 = 0 the partial densities Pl and P2 are easily related 
to the volume fraction x of the fluid component (with k~B = 0): 

P = m + m = ~(I - x) + ~ ~, 

where o{, p~ are the physical densities of the components. The kinetic corrections to 
Pl @nd P2, related to l0 # 0 within the quadratic approximation�9 are easily found by using 
identity (7) and a relation introducing the bulk fraction of the fluid component�9 similarly 
to (3). 

The system of nonlinear hydrodynamic equations (i), (6), (8) describes, within the 
reversible approximation, filtration for arbitrary velocily values in the elastically de- 
formed island. Omitting in (4) the energy of elastic deformations, i.e., making the compo- 
nents hydrodynamically uniform in the system (i)�9 (6), (8), then the pair of equations and 
the momentum conservation law of system (i) is replaced by the equivalent system 

OV 
+ ( v ,  _.v) v = - -  - -  o--/- 

OU 
+ ( u ,  V )  u = - -  - -  0-7 

p VP + - ~  V (u - -  v)L 

t 9 2 
p VP - -  - ~  V (u - -  v)  ~. 

One easily notes the limiting transition to the single-velocity continuum for u § v:~ 

By/St + ( v ,  V ) v  = - ( t / p ) v p .  

As could be expected�9 when the component motion is controlled by hydrodynamically uniform 
equations�9 the limiting transition u + w to the Euler equation is implemented. We note the 
problematic feature of this limiting transition even in the equations of linear filtration 
theory (see, for example, [7, p. 240]). 

The equations provided of nonlinear filtration theory�9 obtained by well-known continuum 
methods�9 are widely used in two-velocity hydrodynamics of superfluid helium [3]. The 
methodology of deriving the equations of motion differs from that of averaging methods (see, 
for example, [8]) and has, it seems to us, a more general character. In studies related to 
averaging methods one puts 

E = Eo,1 + 91u2/2 + Eo,2 + 92v2/2, 

where E 0 i and E 0 2 is the internal energy of components�9 being independent of u, v. In 
other words�9 interaction forces are not being considered. In the general case one cannot 
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select a reference system in  which one could eliminate the relative motion of components, 
implying that the energy of the whole system cannot be divided into internal and kinetic. 
Separating the same energy into two parts, interaction forces, which in the reversible 
approximation are reduced to d'Alembert reaction forces [9], are omitted from the treatment, 
which distinguishes our theory substantially from the corresponding constructions of other 
authors. As a consequence of this simplification in the equations of motion the terms 
(01/2p) A(u --v) 2, (p2/2p) A(u -- v )2 vanish, and problems arise of the limiting transition to 
a single-velocity continuum (even within the linear approximation). At the same time we note 
that the supplementary terms in the equations of motion are quadratic in velocity, along 
with the terms (v, 7)v and (u, 7)m. Therefore, their simultaneous presence in the equations 
of motion is of principal importance. This is a substantial difference between the system 
obtained and the system of linear equations derived, for example, in [I0]. As will be shown 
below, dissipative forces are obtained within the irreversible approximation according to the 
general principles of thermodynamics of irreversible processes. Their shape does not require 
any additional assumptions, unlike studies in filtration theory, based on the averaging of 
"microscopic" equations of motion. 

Before turning to describe hydrodynamic relaxation with entropy production, Eq. (6) 
is given in the reversible case in equivalent form, making it possible to generalize 
to the case of irreversible motion. According to (6), curl e= = 0 or~ie~ - 3ke ~ = 0. The 

last relation is conveniently "convoluted" with velocity u and combined with (6). As a 
result we reach an equation equivalent to the reversible approximation (6): 

(K~k = 8ie ~ - ~ke~). In the general case the irreversible approximation is not compatible 

with the requirement curl e ~ = 0. 

Irreversible thermodynamic relaxation can be described by supplementing the reversible 
fluxes with the corresponding irreversible fluxes and introducing the required sources, whose 
shape is determined later: 

Oe?/Ot + Oi(uke~ + q,,,e~)= ,~ke~ + K%(uh + Xh); (9)  

aj,/at + a~(n,~ + ~ ) +  ~ ) )  = o; (10) 

( ) OS S j q R 
Ot  + (] iV + - -  ; o- T r ( i i )  

0p/0t -{- div j == 0; (12) 

av/ot + (v, V ) v  = --v(~t + h)-- (S/p)V T -i -~ t; (13) 

OE/Ot + div (Q + w)  ~ 0. (14) 

Here  ~, % q / T ,  W a r e  i r r e v e r s i b l e  v e c t o r  f l u x e s  * i k ,  v ( u , v )  a r e  i r r e v e r s i b l e  t e n s o r  f l u x e s ,  
' ik  

h is a scalar flux, [ is the force of intercomponent friction, and R is the dissipative func- 
tion. 

We note that Eq. (9) has no solution of the form e. = 3i F~. Solutions of Eq. (9) by 
I 

means of the relations ga~ = (~, e~) form the tensor of effective elastic deformations [i]. 

The energy conservation law (14) must follow identically from the system (9)-(13). As a re- 
sult, all irreversible fluxes must be found uniquely. For this it is necessary to repeat the 
consistency algorithm of the system of equations discussed above. At the phase of sep@roting 
reversible fluxes we reach 

([ v2 s,] ) (15) 
o_T_+div p + - : 2 - + - ] 7 -  j - F u ( u ,  jo)+hat~e~(e~,u ) = R - -  

(4) T div - -  uiOn (~(") - -  , ~ . ~  + ~ , ) )  + q - -  9u)  (f  - -  V h)  + 

\ Ot + (U' V) hczsei ekOhui. 
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The last structure consisting of the two terms in (15) can be calculated by using the defini- 
tion of the metric tensor and (9): 

OgC~ ~ (z fs I h ~  + h ~  (u, V) g~l~ = ha~e~ e~ (~?~ --  O~u~ --  Oiq~) + x~h~f~e~Kgi~ --  
--37- -Y- 

~ z  15 - -  q~h~f~ei Oie~. 

Taking g = det (ge$), then i/v/g is conveniently related to the partial density 01 

of the viscoelastic continuum [i]. Since dg = -g gasdga$, then 

@fiat + d i v  (O~(u -~ q~)) = 9x(5~ - -  

Here the tensor Lik is defined by the expression 

L~e~ = ~e~ + K% (~ -- ~). 

The relations derived transform the right hand side of Eq. (15): 

at q- div Q = R - -  T div  - -  u~a~a~ ) -  v~a~a~, > + 

( -~2 " ) - -  O~(ha~eieaq)~)+ haf~eiehLih § + A +  a~a~ ) (A 9uO ( ]~- -Ou O a t h -  ~ ~ ~ ~ 

+ 

~ l l V g  

Keeping in mind the two conditions (in the limit u ~ v and for g~$ = 0 the theory must lead 
to the Navier-Stokes equations; phenomenological account of relaxation of tangential stresses 
leads to the nonlinear generalization of the Maxwell relaxation model), we obtain an expres- 
sion for the irreversible part of the energy flux 

a E a t  + d i v ( Q  + q + h( i  - -  9u) + ,,m ~ + + hc~ei e~,~) = O. 

The dissipation function acquires the following form under these conditions 

I Ohgl#) ) ( ] i -=  DUi) -[- q)i(e~ah(ha[~e~) -I- hafiehKia) -[- 

In the fluxes Lik , v(u), 
ik 

w(v) it is convenient to separate the diagonal parts 
ik 
(u) * 

: ~  = A ~  + a6~,  7tl~ ) = B ~  + b6~, L ~  = L ~  + L6i~. 

The notations introduced lead to the expression 

=_ ~ +. hcLt~ekKih ) + - -R  --f-OhT + .&+~Ok~h (]i--9u~)+% 

+ a div u + b div v + h div (j - -  9u) + 3Lh$ + --~-Aik ~ u i  + cOiuk - - -~  6~div u + 

1 ( 2 ) �9 ~ 
+ ~ B~k 0ht:~ + a#~'~ - -  -~6~k div  v + L~h (ei ehH=~). 

Here has = Has + gash~- 

relations 

For scalar fluxes and forces we have the linear thermodynamic 

- -  a = ~n div  u + ~12 div v + ~13 div (j - -  pu) + ~14h~,, 

- -  b = ~21 div  u + ~2 div  v + ~23 div  (j - -  pu) + ~4h~, 

h = ~31 d iv  u +~32 d iv  v + ~33 div  (j - -  pu) + ~34h~, 

L = ~1 div  u + ~42 d iv  v + ~4~ div  (j - -  9u) + ~,t4h~. 
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To reveal the physical meaning of the flux L we calculate (eu)ie ~. We first show that the 

object eia can be selected so as to satisfy (ea)ie ~ = 6ik" Let Rik = gamete . Differentiat- 

ing Rik with respect to time, we obtain 

o t ~  , . , ,  , O g ~  o~ o~ 
..... at = (ea)i (eg)a-gy  -4- (e~)a ~ q- (ea)i-~T. 

U s i n g  t h e  e q u a t i o n s  f o r  t h e  c o r r e s p o n d i n g  d e r i v a t i v e s  g i v e s  

OR~n/Ot = (RnvLiv + RivLnv - -  2Ri~R~t~Lvt~) + (R~vR~t~ + R m R n  ~ _ R~it6i ~ __ 

- -  R ~ 6 ~ ) ( O . u ~  + 0vg~) + (u~ + 9~)((e~)~ 0ve~ ( R ~  - -  6~.) + 

e + ( ~)i 0ve~ ( R ~  - -  6h.)). 

The equation obtained for an arbitrary moment of time has the so.lution 

R ~  = (ea)~ e~ = 6 ~ .  ( 16 ) 

I t  i s  n e c e s s a r y  t o  r e q u i r e  t h a t  c o n d i t i o n  ( 1 6 )  be  s a t i s f i e d  a t  t h e  i n i t i a l  moment o f  t i m e .  
This is not difficult to do by assuming that the initial deformation state of the medium by 
continuous deformation of the metric in Euclidean space. It must be noted that in the pre- 
sence of fluxes ~i, ~ik the metric g~ is generally speaking, non-Euclidean. The choice 
Rik = 6ik leads to the continuity equation 30~/St + div(p~(u + ~)) = 3p~L. Thus, the scalar 
flux L describes the behavior of so-called noncompact bodies [i], whose irreversible deforma- 
tion leads to the disappearance of cavities contained in them initially. For compact bodies 
it is necessary to put ~ = r = ~3~ = ~ = 0. For vecto~ fluxes and forces we have the 
relations of linear thermodynamics of irreversible processes 

- - q i  = a ~  (i/T)OiT + 1~%12 (]i - OUi) + 0~13 ( e~O~ ( h~ite~ ) + haite~K~),  

1 1 it a 

it a it 
- = + ( ]4  - -  + + 

In the absence of an irreversible flux ~ it is necessary to put a~i - 0. Finally, the ten- 

sor fluxes Aik, Bik, Lik, characterizing irreversible deformation, are expressed in terms of 
their corresponding thermodynamic forces: 

- -  Ask = ~]11 (ahui A~ a iuk  _ (2/3) 6i~ div u) + ~12 (ahv~ + aiv~ - -  
s i t  - -  (2/3) 6~h div v) + ~13ei ehH~g, 

- -  Bik = ~hl (Ohu~ + aiuk - -  (2/3) 6~h div u) + ~h2 (Ohvi + Oivh - -  

- -  (2/3) 6ik div v) + ~23e~e~Hait, 

- -  Li*k = ~hi (Ohui + Oiu~ - -  (2/3) 6~h div u) + ~132 (0nvi + Oivk - -  
s i t  - -  (2.."3) 6ih div v) + ~33ei e~H~it. 

T h u s ,  we r e a c h  t h e  e q u a t i o n s  o f  m o t i o n  

O]i/Ot -b 04 (pluiuh q- p2vivh -k p6i~ + h~e~e~ + Aik + B ~  + a61h+ bSih) ---- 0, 

OS/Ot q- div (S]/p q- q /T)  : R / T ,  Op/Ot q- div j : 0, 

~ q- (v, V) v i = - -  ~-t Oip --b 0 i (u - -  v) ~ - -  f ~  he~O~g ~ - -  O~h - -  

I 0h (Bi~ + b6ik) i - -  p'~ - -  0~21 y O i T  - -  a22  (] ' i  - -  ~)Ui) - -  

- + h ite Kl), 

= L ~ e ~  ~- K~h (u~ q- 9h) -b L e ~ ,  

(i7) 
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which, including the equation of state E0 = E0(p, S, J0, gaB), form a closed system, describ- 
ing the filtration process of a viscous fluid through a viscoelastic medium. Following the 
method of [ii], it is not difficult to obtain the linear version of the relaxation model. 
The phenomenologically constructed model describes the relaxation of tangential stresses in 
the island, through which filtration of the Newtonian fluid occurs. The theory is based on 
general physical principles in which case the Darcy relation is not used, unlike the widely 
used approach of [2]. This makes it possible to subsequently include nonlinear effects of 
filtration theory for arbitrary values of hydrodynamic velocities. 

The approach used has made it possible to reveal the phenomenological nature of Darcy's 
relation, which, in turn, follows from system (17) by omitting inertial nonlinear terms in 
the velocity, as well as all kinetic coefficients besides ~22. We reach the system of 
equations 

+ = o ,  

~Oip + ~-~h~Oig ~ + avi = O, d i v  (92v) = O, 
9 

describing the interaction of the field v with the stress field hap in the absence of motion 
of the solid component. We note that the approach developed can be generalized to the case 
in which the filtering fluid manifests properties of a Maxwellian body. To describe then the 
fluid phase it is necessary to follow the approach adopted in this study for describing a 
viscoelastic island. Obtaining the original equations is not difficult when adopting our 
approach. The study of filtration systems, in which the very filtering fluid manifests 
properties different than a Newtonian fluid, is of decisive value in petroleum technology 
at the present time [12]. The approach developed becomes interesting for this class of prob- 
lems, since Darcy's relation is not used in it. 
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